A global genericity theorem for bifurcations in variational problems
نویسندگان
چکیده
منابع مشابه
Strong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces
In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.
متن کاملGenericity analysis of split bifurcations
This paper analyzes the genericity of bifurcations of one-parameter families of smooth (C1) vector elds that are embedded in an underlying multidimensional parameter space. Bifurcations with crossing equilibrium loci are called split bifurcations.They include, for example, the pitchfork bifurcation and the transcritical bifurcation in one-dimensional systems. In a regular parameter space whe...
متن کاملA Survey of Direct Methods for Solving Variational Problems
This study presents a comparative survey of direct methods for solving Variational Problems. Thisproblems can be used to solve various differential equations in physics and chemistry like RateEquation for a chemical reaction. There are procedures that any type of a differential equation isconvertible to a variational problem. Therefore finding the solution of a differential equation isequivalen...
متن کاملA Global Index Theorem for Degenerate Variational Inequalities
We derive a global index theorem for degenerate variational inequality problems defined by a continuously differentiable function F over a convex set M represented by a finite number of inequality constraints. Our index theorem can be applied when the solutions are non-singular and possibly degenerate, as long as they also satisfy the injective normal map property, which is implied by strong st...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1980
ISSN: 0022-1236
DOI: 10.1016/0022-1236(80)90008-7